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The explosive growth of large language models (LLMs) and agentic AI has fundamentally transformed data center 
networking requirements, pushing traditional architectures beyond their breaking point. Modern AI training workloads, 
particularly those leveraging the latest NVIDIA GPUs with ever increasing high bandwidth memory, create an insatiable 
demand for network bandwidth that makes the fabric architecture a key determinant of both system performance and 
economic viability. The shift from compute-bound to communication-bound workloads has elevated network design to a 
critical enabler of AI infrastructure success.

Training workloads are characterized by massive, synchronized collective communication patterns, particularly all-reduce 
and all-gather operations, where hundreds or thousands of GPUs exchange gradient updates and model parameters, 
creating predictable but enormous bandwidth demands that can overwhelm conventional network fabrics. Inference 
workloads prioritize low latency and high concurrent throughput for independent request processing, where network 
delay directly impact user experience and service quality.

The rise of Mixture-of-Experts (MoE) models, especially in conjunction with Agentic AI systems, has additionally altered 
the network equation, delivering increased token performance while simultaneously reducing collective network 
communication traffic to levels comparable to much smaller models. These evolutions continue to impact network 
topology design for both workload types. 

The evolution of AI network topologies must consider the different requirements of training and inference:

The evolution from CLOS to rail-based network topologies reflects a fundamental shift from general-purpose to 
AI-optimized designs. CLOS networks provide universal any-to-any connectivity through leaf-spine architectures that 
direct most communications through three-hop paths, regardless of AI workloads' predictable patterns where GPUs of 
the same local rank (0-7) across nodes communicate most frequently. RAIL topologies revolutionized this by grouping 
same-rank GPUs into dedicated "rails" with single-hop connectivity, dramatically improving efficiency for collective 
operations like all-reduce. RAIL-Optimized architectures retain a limited spine layer for dramatically larger low-hop 
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CLOS networks implement a hierarchical leaf-spine architecture designed to provide universal any-to-any connectivity, 
ensuring every GPU in the cluster has a path to communicate with every other GPU through the fabric. In this design, 
each server node connects to a leaf switch, which in turn connects to multiple spine switches, creating a structured 
mesh where the spine layer acts as the central interconnect for all inter-leaf communications. In AI environments where 
predictable bandwidth is essential, a “fat-tree” implementation of leaf-spine is used, meaning every leaf switch has as 
uplink and downlink bandwidth. While this topology guarantees full bisectional bandwidth and multiple redundant paths 
between any two endpoints, the path lengths are not uniform. Communications between nodes on the same leaf switch 
may traverse shorter paths, while inter-leaf communications must traverse the spine layer, creating the characteristic 
three-hop (leaf-spine-leaf) path that the document references. This universal connectivity comes at a significant cost, 
as every leaf switch requires high-bandwidth uplinks to multiple spine switches. For AI workloads with their predictable 
communication patterns, this over-provisioned approach becomes economically inefficient, as the network treats a 
critical same-rank GPU communication (like GPU0 to GPU0 between nodes) with the same resource-intensive spine 
traversal as less frequent cross-rank communications, despite the dramatically different traffic volumes and importance 
of these patterns.

A CLOS network comprised of Dell Z9864F-ON switches with 64 ports at 800gb each can support one set of 8 servers 
(64 GPUs) per leaf switch. As an extreme scaling example, if 400gb uplinks are used, to match the 400gb connections to 
each GPU, then a total of 64 leaf switches can be combined into a single fabric for a total of 64 leaf switches x 8 servers 
per leaf switch = 512 servers or 4096 GPUs in a single, two layer fabric.

Figure 1: A typical CLOS Network

clusters for cross-rail flexibility while RAIL only designs eliminate the spine entirely, using internal connectivity for cross-
rail forwarding, achieving substantial cost reduction with minimal performance impact, especially with  MoE models that 
drastically reduce inter-rail communication requirements.

CLOS Leaf-Spine Networks
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RAIL network topology emerged from the high-performance computing (HPC) community's recognition that AI 
workloads exhibit highly predictable, rank-based communication patterns. The rail concept organizes GPUs by their local 
rank within nodes, creating logical groupings or "rails" where all GPU1s across the cluster belong to RAIL 1, all GPU2s 
to RAIL 2, etc. This enables single-hop communication for the dominant same-rank traffic patterns that characterize 
collective operations like all-reduce. RAIL-Optimized designs maintain a fewer number of spine switches to handle 
cross-rail traffic while enabling single-hop intra-rail communications for same-rank patterns, effectively providing the 
best of both worlds. The advantages include near-optimal performance for collective operations, and massive scalability 
to tens of thousands of GPUs for both training and inference workloads. Research has demonstrated near-linear 
scaling efficiency for transformer models in RAIL-Optimized configurations, making them suitable for frontier model 
development where maximum performance and architectural flexibility are paramount. While this architecture delivers 
superior performance compared to pure rail designs for workloads with significant cross-rail communication, the cost 
premium may become increasingly difficult to justify as MoE models and other sparse architectures reduce the actual 
need for spine connectivity unless extreme scalability is required.

RAIL-Optimized Networks

A RAIL-Optimized network comprised of Dell Z9864F-ON switches with 64 ports at 800gb each can support 64 GPUs 
at 400gb each. As each GPU in a server connects to a different RAIL, this equates to 64 servers per switch. At scale, this 
represents 8 RAIL switches at 64 servers per leaf switch = 512 servers or 4096 GPUs. Connecting each of these RAILs to 
spine switches with 400gb uplinks allows for a total of 16 groups per RAIL-Optimized network fabric - 128 ports at 400gb 
per spine translates to 128 total leaf switches; at 8 RAIL switches per group that yields 128/8=16 groups per fabric. The 
fully scaled network fabric comprises 192 Z9864F-ON switches (8 RAILs x 16 groups = 128 RAIL switches, plus 64 spine 
switches). At this scale, the RAIL-optimized network fabric supports 16 groups x 512 servers per group = 8192 servers or 
65536 GPUs. This represents 8x the servers of a RAIL network and 16x the servers of the CLOS network.

Figure 2: A typical RAIL-Optimized Network
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More recently, the concept of a "RAIL only" network was introduced as a more streamlined and cost-effective alternative, 
specifically tailored for training large language models (LLMs). Researchers observed that the communication patterns 
in LLM training are often sparse, meaning not all GPUs need to communicate with every other GPU at all times. The 
"RAIL only" architecture capitalizes on this by eliminating the spine layer of switches found in the fully RAIL-optimized 
design. It maintains the dedicated rails for same-index GPU communication but forgoes the comprehensive any-to-any 
connectivity at the spine level. This approach significantly reduces network cost, complexity, and power consumption 
while still providing the high-performance communication necessary for many LLM training workloads. The growing 
trends of MoE models and Agentic AI workflows with smaller, more focused models, have reduced the demand for cross 
RAIL  traffic, allowing for additional streamlining of AI cluster networks.

A RAIL network comprised of Dell Z9864F-ON switches with 64 ports at 800gb each can support 128 GPUs at 400gb 
each. As each GPU in a server connects to a different RAIL, this equates to 128 servers per switch. At full scale, 8 RAIL 
switches x 128 servers per leaf switch = 1024 servers or 8192 GPUs in a single fabric. This represents twice as many 
servers (1024 vs 512) in the fabric with a fraction of the total switches (8 vs 128) compares to a CLOS network. 

RAIL Only Networks

Figure 3: A typical RAIL Network

CLOS Leaf-Spine Network
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Usage: Very large training and 
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For the training of standard, dense transformer-based LLMs like the GPT family, the dominant distributed training 
strategy is data parallelism. In this paradigm, the primary communication bottleneck is the all-reduce collective 
operation, which is used to aggregate and distribute parameter gradients across all workers after each backward 
pass. This operation consists almost entirely of traffic between GPUs of the same rank, making it an intra-rail 
communication pattern.

Because both the RAIL-Optimized and RAIL-Only topologies are explicitly designed to optimize this path with a 
single-hop connection at the rail switch, their performance for these workloads is virtually identical. Analytical models 
and empirical studies confirm that for standard LLM training, the RAIL-Only network achieves the same training 
performance and throughput as the RAIL-Optimized network. Both rail-based designs will outperform a generic CLOS 
topology, which forces this critical traffic to take a slower, three-hop path through the spine.

The introduction of the H200 GPU further reinforces this conclusion. Its larger 141 GB memory allows for the use of 
much larger batch sizes. For example, when training a model like Llama 2 70B, the batch size can be increased from 
8 on an H100 to 32 on an H200, which can improve throughput by up to 4x. A larger batch size increases the amount 
of computation performed per training step relative to the amount of communication. This higher computation-to-
communication ratio makes the overall training job even more resilient to minor variations in network latency, further 
strengthening the case that the low-cost RAIL-Only design is often sufficient, challenging a long-held industry 
definition of an "optimal" network as one providing full, non-blocking, any-to-any connectivity.

LLM Training Performance with Standard Models

Benchmarking

Figure 4: Fine Tuning Time
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Mixture-of-Experts (MoE) models represent a different class of LLM architecture that introduces a more complex 
communication pattern. During the forward pass of an MoE model, each input token is dynamically routed to a small 
subset of "expert" sub-networks (which are typically feed-forward layers) distributed across the GPUs. This routing 
requires an all-to-all collective communication operation to exchange token embeddings before the expert computation 
and to gather the results afterward. Unlike all-reduce, an all-to-all operation is inherently cross-rail, as every GPU must 
communicate with every other GPU in the collective, not just its same-rank peers. This is the stress test scenario where 
the RAIL-Only topology's lack of a spine layer is most acutely felt. The heavy all-to-all traffic must be handled by the 
slower, multi-hop forwarding path that traverses the compute nodes' internal fabric.

This architectural difference results in a small but measurable performance trade-off in training. Research quantifies 
the throughput overhead for MoE models running on a RAIL-Only network to be in the range of 5-10% compared to a 
RAIL-Optimized network, which can handle this traffic efficiently via its spine. The RAIL-Only topology is therefore not a 
"free lunch." However, this performance degradation should not be viewed as a technical showstopper but rather as an 
economic decision variable.

In the rapidly evolving landscape of large language models, two prominent architectural approaches stand out: the dense 
transformer models, exemplified by Meta's Llama 3 family, and the sparsely activated Mixture-of-Experts (MoE) models. 
While both aim to achieve state-of-the-art performance, they do so through fundamentally different strategies regarding 
how they scale and utilize their parameters. The core distinction lies in how they process information. Llama 3 models 
are "dense," meaning that for any given input, all of the model's parameters are activated to process the information. 
In contrast, MoE models are "sparse," utilizing a routing mechanism to select a small subset of specialized "experts" to 
handle a specific input. This results in only a fraction of the model's total parameters being used at any one time. Below is 
a comparison of the models by size, training, and requirements.

LLM Training Performance with Mixture of Experts

LLM Inferencing

Figure 5: Llama Models

Llama Models

Llama 2 Llama 3 Llama 4

7b 13b 70b 8b 70b 405b 17B-16E 17B-128E

Size (GB) 13.5 26 138 15 131 1012 271 989

GPU Hours 
Trained(M) .184 .369 1.72 1.3 6.4 30.84 5 2.4

Min GPUs 
(H100) 1 1 4 1 4 8 8 8
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While Llama3-405b and Llama4-Maverick are approximately the same size, the dramatic difference in performance and 
system demand is apparent in multi-node testing:

Figure 6: MoE Effect for Models of Roughly Same Total Size

Figure 7: MoE Drastically Reduces Collectives Communication via Network

Critically telling for this is the backend network traffic differences between models:

Collective Traffic



Network Topology Analysis 8
© 2025 Signal65. All rights reserved.

The physical topology defines the potential pathways for data, but it is the transport protocol and its supporting features 
that transform this physical infrastructure into the high-performance, reliable fabric required for distributed AI training. 
The protocol of choice for high-performance Ethernet-based AI clusters is RDMA over Converged Ethernet version 2 
(RoCEv2), supported by advanced congestion control mechanisms. 

Effective congestion control is not just a switch feature or a NIC feature; it is a tightly coupled system that requires 
seamless, low-latency cooperation between the two. Vertically integrated solutions, where the switch ASIC and NIC are 
co-designed, offer a distinct advantage. Broadcom's Thor 2 NICs and Tomahawk switch ASICs are engineered as such 
a system for AI/ML workloads. The Broadcom Thor 2 NIC features hardware-based congestion control. This means the 
logic to process incoming CNPs and adjust the sending rate is implemented directly in the NIC's silicon, not in a slower 
software driver or firmware layer. This hardware offload allows for microsecond-level reactions to congestion signals, 
enabling the fabric to stabilize much more quickly than systems relying on software-based control loops.

While raw performance is a primary driver, the decision to build a multi-million-dollar AI factory hinges on a broader 
set of practical and economic considerations. This section provides a holistic assessment of the network topologies, 
moving beyond throughput benchmarks to analyze Total Cost of Ownership (TCO), fault tolerance, and the operational 
realities of deployment and management. TCO provides a comprehensive financial view of an infrastructure investment, 
encompassing not only the upfront Capital Expenditure (CapEx) for hardware but also the recurring Operational 
Expenditure (OpEx) for power, cooling, space, and management over the system's lifecycle. For AI network fabrics, 
the differences in TCO between topologies are stark and strategically significant. The primary CapEx components 
for a network fabric are the switches, NICs, and the optical transceivers and cables used for interconnects. Critically, 
research highlights that optical transceivers can account for most of the total network cost, especially as link speeds 
and distances increase. 

Lossless AI Fabrics with RoCEv2

Implementation Considerations

Total Cost of Ownership Considerations
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Choose RAIL-Only Architecture when:

•	 Building dedicated AI infrastructure primarily for inferencing

•	 MoE models represent significant portion of workload mix

•	 TCO optimization is critical for competitive advantage

Consider RAIL-Optimized when:

•	 Requiring maximum flexibility for experimental AI architectures

•	 Supporting diverse legacy models with unknown communication patterns

•	 Extreme scalability is needed for AI training

Consider CLOS Networks when:

•	 Building heterogeneous infrastructure with limited AI workloads

•	 Simplified routing and management are preferred

The emergence of MoE models for agentic AI and larger GPU memory capacity are driving a shift in economics and 
architecture. Organizations that embrace these innovations can achieve significant competitive advantages through:

•	 Reduction in network infrastructure costs

•	 Improvement in inference throughput with MoE models

•	 Ability to deploy more computational resources within fixed budgets

Purpose-built architectures that precisely align with the unique demands of modern machine learning workloads will 
define the next generation of AI infrastructure. Early adopters of rail-based architectures optimized for MoE models will 
establish sustainable competitive advantages in the rapidly evolving AI landscape.

Strategic Recommendations and Future Outlook

Decision Framework for Network Infrastructure Investment

Conclusion
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